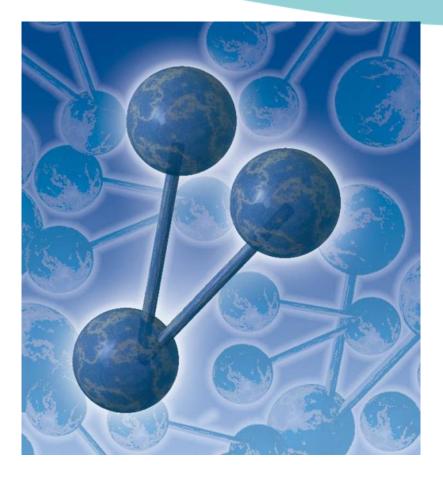
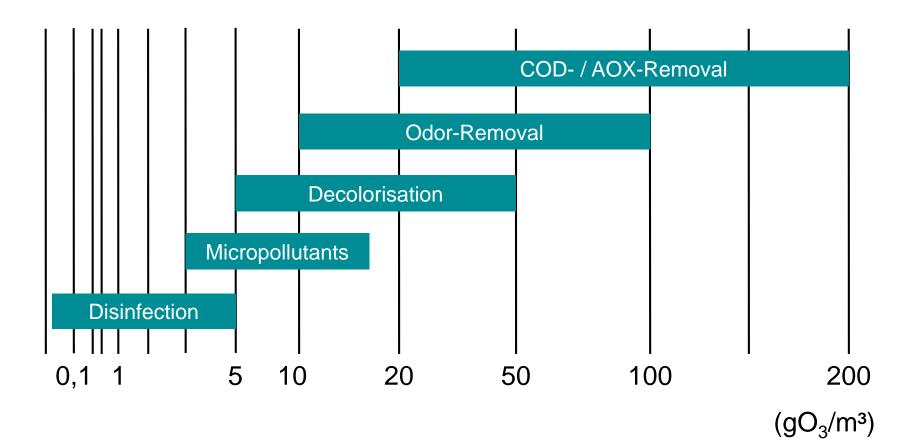
MICROINQUINANTI E CONTAMINANTI EMERGENTI Testimonianze, Soluzioni e Prospettive Milano – 11 e 12 Giugno 2018

L'ozono nella rimozione dei microinquinanti dalle acque reflue e potabili



Ing. Federico Dallera

Ozone - Oxidation Applications


- Removal of biofilms e.g. cooling water
- Disinfection in drinking water
- COD removal in waste water
- Removal of toxic substances:
 Phenols, Pesticides, PPCP
- Decolorisation
- Air treatment
- Bleaching of pulp for paper industry
- ..

Ozone - Oxidation

Dosages for different applications

Removal of Emerging Contaminants (EC) by ozone

- Basics -

Pharmaceuticals (API):

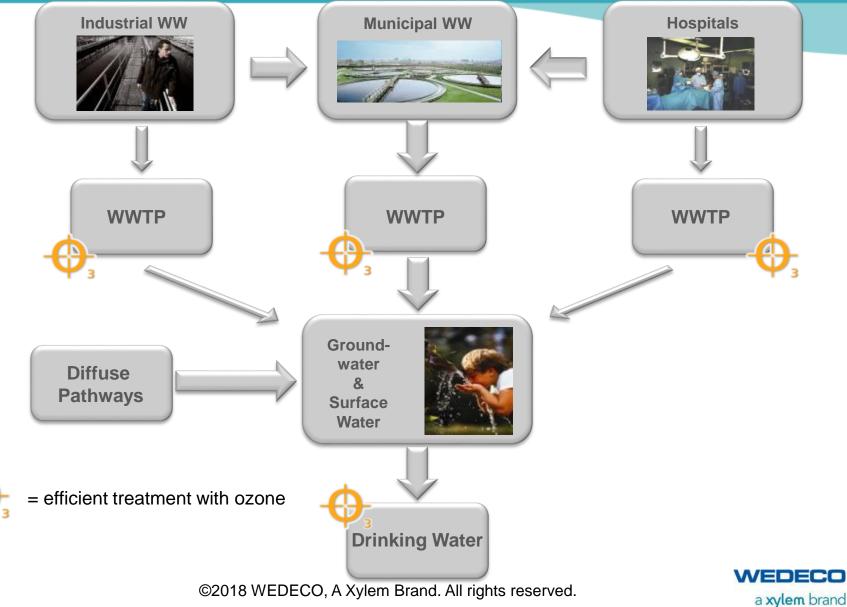
substances which will be **<u>excreted</u>** after use.

Endocrine disrupting compounds (EDC):

substances which cause hormonal effects.

Personal care products (PCP):

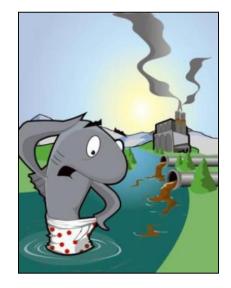
perfumes, sun protections, cleaning agents etc.


Pesticides:

entry into the water cycle from households and agriculture **Industrial Chemicals:**

emissions of specific substances from industrial processes

Sources and Pathways of EC's Main pathways of EC's and EDC's into the water cycle


The occurrence of endocrine substances in our wastewater and drinking water lead to resistant changes in our ecosystem

In fish was found

- increased hermaphroditism
- declining number of sperm

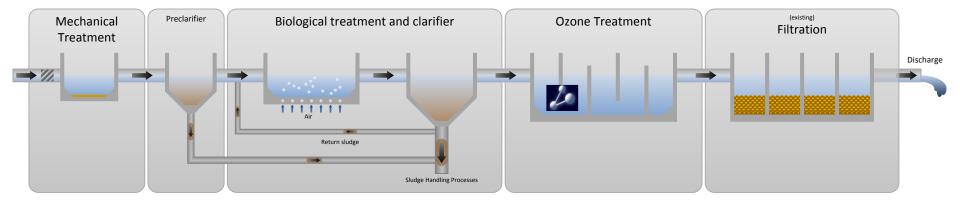
Potential impact to humans

- Reduction of fertility
- Higher number of tumors

Annual drug consumption Example: Switzerland

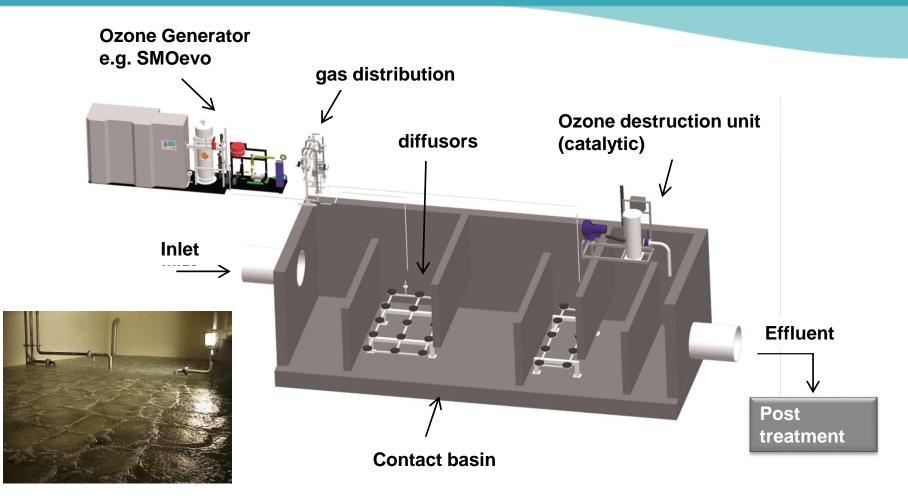
Diclofenac	5.411 kg/a
Carbamazepine anticonvulsant	3.912 kg/a
Clarithromycin antibiotics	1.597 kg/a
Metoprolol beta blocker	4.381 kg/a
Ethinyl estradiol	4 kg/a
Sulfamethoxazole	2.427 kg/a
Benzotriazole Corrosion inhibitor	16.000 kg/a

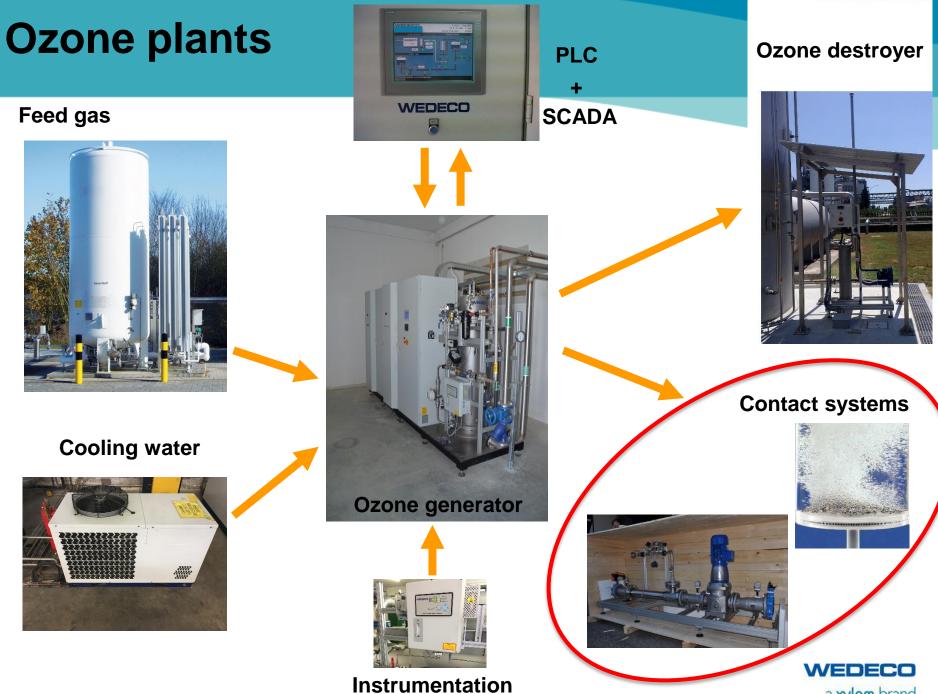
More than 50% of the active substances are excreted unchanged and recovered in the effluent.


Source: Götz, C.W., R. Kase und J. Hollender (2010). "Mikroverunreinigungen - Beurteilungskonzept für organische Spurenstoffe aus kommunalem Abwasser". Studie im Auftrag des BAFU. Eawag, Dübendorf

Removal of Emerging Contaminants by ozone

- Technical solutions and required components -



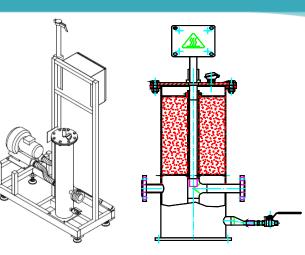


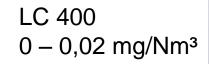
Ozone-based process for EC oxidation Required components

a xylem brand

a xylem brand

Ozone – gas transfer Diffusor or Venturi


	PRO	CONTRA	
Diffusor	 Good gas transfer Small scope for installation Low investment costs Low operating costs 	 Limited in minimum gas flow Bio-fouling possible Diffusor system inside the tank 	
Venturi	 Very high gas transfer Expanded operating range for gas flow Maintenance outside the contact basin 	 Limited minimum water flow (fixed flow) Enlarge scope of installation Increased operating costs by additional pumps Increased investment costs 	



Offgas treatment and measurement

Catalytic Ozone Destroyer 1 – 4.200 Nm³/h

WEDECO

a xylem brand

Safety Technologies (Scope)	Safety aspects (excluded)
Ambient air monitor ozone	Lockable operating room
Ambient air monitor oxygen	Emergency button and display outside (optional)
Horn and flash light	Gas mask etc.
Emergency button	Additional space for maintenance and operation
Permanent control of all components	Forced ventilation
Vacuum control (Venturi)	
Vacuum control (basin)	
Control of resources (e.g. temperature cooling water, pressure)	

Removal of Emerging Contaminants (EC) by ozone

- Process controls -

Differentiation necessary in

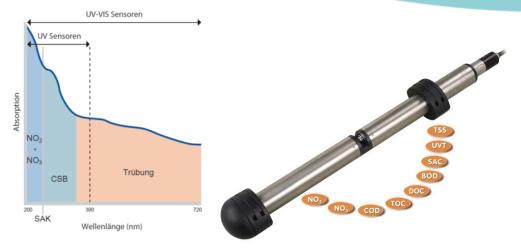
- 1. Control of the **ozone generator** to produce required ozone mass (included)
- 2. Control concepts **to calculate** the required ozone mass based on various parameter (based on customers requirements)

Process Controls Parameter for calculation of required ozone mass

	Flow-proportional	DOC-based	SAC inlet	SAC-Removal
Input	Ozone dosage in mg/L	Specific ozone dosage Z _{spez,DOC}	Specific ozone dosage Z _{spez,SAC}	Percentage SAC-removal
Control concept	Calculation based on current inlet flow	Calculation based on current inlet flow and DOC concentration	Calculation based on current inlet flow and SAC concentration	Adoption of ozone generator based on the difference between inlet and effluent value
Parameter	Flow	Flow, DOC	Flow, SAC	Flow, 2xSAC

DOC = Dissolved Organic Carbon --- SAC = Spectral Absorbance Coefficient @ 254 nm

Correlation between DOC or SAC to EC's concentration was investigated in several research projects but has to be checked individually. All described control concepts are installed in large scale systems and proven.



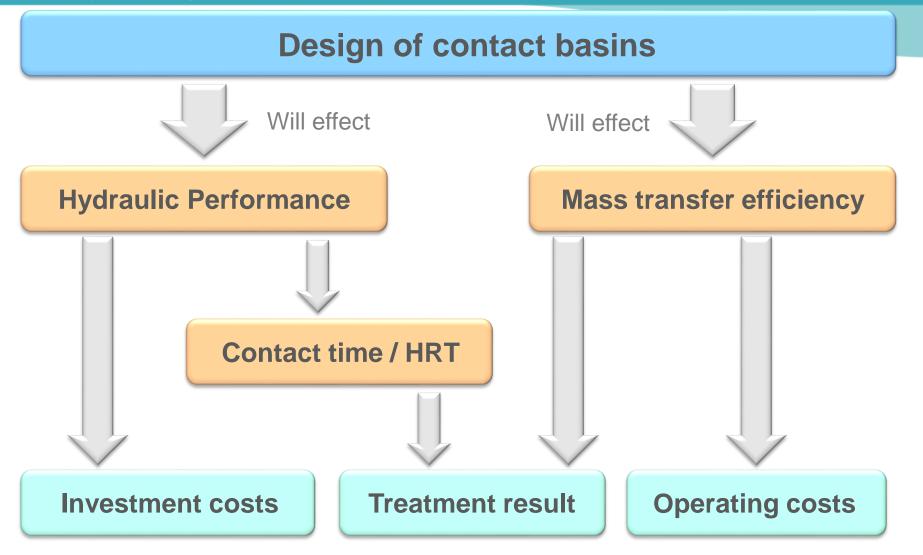
WTW Sensors

WTW CarboVis and NiCaVis

256 wave length

- Improved correlation
- Improved corrections of turbidity
- Improved compensation of varying concentrations

a xylem brand


- Intelligent Network up to 20 sensors
- Mobile Interface
- Expendable by pre-calibrated Plug&Play sensors
- Communication: 4-20 mA, PROFIBUS, MODBUS RTU, Ethernet IP, MODBUS TCP

Removal of Emerging Contaminants (EC) by ozone

- Design of contact basins -

Design of contact basins Why "design"?

©2018 WEDECO, A Xylem Brand. All rights reserved.

WEDECC

a xylem brand

Design of contact basins Controllable parameters

Expectations:

- Improved utilization of existing volumes
- Improved flow and time distribution

Controllable parameters

Geometric parameters

- Depth (water level)
- Number of segments
- Area of segments
- Wall distances
- Design of free passages
- Design of inlet

Diffusors

- Bubble size
- Type and model
- Arrangement
- Incident flow
- Distances
- Operating ranges

Removal of Emerging Contaminants (EC) by ozone

- References -

Project	Town / Country	Partner	WWWTP	Ozone dosage [g/m³]	Start / End	
EU-Project Poseidon	Brunswick / Germany	Different EU Partner	Brunswick / Germany	5 - 15	Januar y 2001 - June 2004	
EU-Project Poseidon	Opfikon / Switzerland	EAWAG	Opfikon / CH	5 - 15	November 2003	
Research project	Stuttgart / Germany	University Stuttgart	Büsnau / Germany	5 - 15	December 2003 – May 2005	
Pilotox	Berlin / Germany	TU Berlin	Ruhleben / Germany	5 - 15	December 2004 – June 2005	
Research project	Leiden AD / The Netherlands	Hoogheemraadscha p van Rijnland	Leiden AD / NL	5 - 15	March 2008 – November 2008	
KomOzon	Vienna/ Austria	TU Wien	Vienna/ Austria	5 - 15	June 2007 - October 2010	
Research project	Ilkestone / GB	Severn Trent	Ilkestone / GB	3 - 5	July 2007 – 2009	
Strategy Micropoll	Regensdorf / Switzerland	BAFU / CH; EAWAG	Regensdorf / CH	1 - 10	July 2007 – October 2008	
Strategy Micropoll	Lausanne / Switzerland	BAFU / CH; EAWAG; University Lausanne	Lausanne / CH	1 - 10	June 2009 - July 2010	
TransRisk	Darmstadt / Germany	BfG; TU Darmstadt	Darmstadt / Germany	1 - 10	Nov. 2011 – Dec. 2015	
KomOzAk	Vienna / Austria	TU Wien	Vienna/ Austria	5 - 15	January 2013 – March 2016	
SchussenAktiv+	Eriskirch / Germany		Eriskirch / Germany	1 - 10	September 2012 – April 2015	

WEDECO is for more than 13 years a partner for the removal of EC's

a xylem brand

References

Large scale references

Project	Operator / Partner	Town	Country	Year	Flow [m³/h]	Capacity [kg/h]	Application H = Hospital/ M = Municipal WWTP
"Strategy Micropoll"	BAFU, EAWAG	Regensdorf	Switzerland	2007	430	5	М
"Strategy Micropoll"	BAFU; EAWAG; Uni Lausanne	Lausanne	Switzerland	2009	360	5	М
Bad Sassendorf	Emschergenossenschaft	Bad Sassendorf	Germany	2009	300	4.8	М
Schwerte	Ruhrverband	Schwerte	Germany	2011	1,100	7	М
Duisburg-Vierlinden	Wirtschaftsbetriebe Duisburg	Duisburg-Vierlinden	Germany	2011	400	2 x 1.95	М
Warburg	KUW Warburg AÖR	Warburg	Germany	2016	660	2 x 1.7	М
Espelkamp	Stadtwerke Espelkamp	Espelkamp	Germany	Planned 2017	435	3.5	М
Köln-Rodenkirchen	STEB Köln	Cologne	Germany	2016	205	1.5	М
Weißenburg	Stadtwerke Weißenburg	Weißenburg/ Bayern	Germany	Planned 2017	450	2.7	М
Aachen-Soers	Wasserverband Eifel-Rur	Aachen	Germany	Planned 2017	10,800	3 x 10.8	М
ARA Werdhölzli	ERZ Zürich	Zurich	Switzerland	Planned 2018	23,400	8 x 19.1	М
ARA Eich	Zweckverband Bassersdorf	Bassersdorf	Switzerland	Planned 2017	900	2 x 1.75	М
ARA ProRheno	ProRheno	Basel	Switzerland	Planned 2018	11,000	3 x 12	М
ARA Porrentruy	Syndicat intercommunal pour l'épuration des eaux usées de Porrentruy et environs (SEPE)	Porrentruy	Switzerland	Planned 2019	612	4.2	М
St. Pourçain-sur- Sioule	Ville de St. Pourçain / SEMERAP	St. Pourçain	France	2013	90	1.2	М
Simrisham	Simrishams Kommun	Simrisham	Sweden	2015	220	2	Μ
Krankenhaus Waldbröl	Krankenhaus Waldbröl	Waldbröl	Germany	2010	32	0.4	Н
Marienhospital	Emschergenossenschaft	Gelsenkirchen	Germany	2011	25	0.4	Н

References WWTP – Short summary

Initial situation

Plant size:

25.000 PE + max. 15.000 PE druing campaign of sugar beets harvesting

Micropollutants: (increased Conc.)

Diclofenac (Pain killer) Carbamazepin (Antiepileptic) Sufamethoxazol (Antibiotic) Benzotriazol (dish washer detergent, corrosion inhibitor)

Target: improve Improvement of WW effluent quality to water quality in recieving small river (Diemel), lowest operating cost

Data: Ozone + Downstream Bioreactor

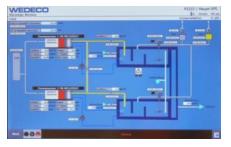
Design flow: Flow min. - max.: Contactor: Hydraulic retention time: Ozone generator:

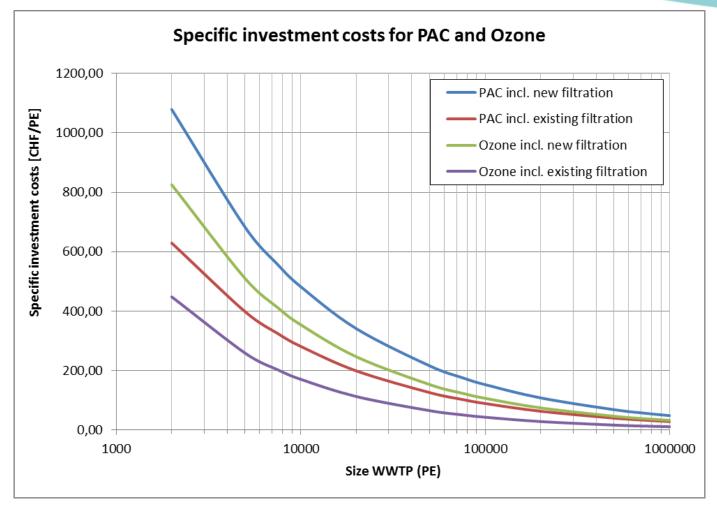
Post treatment: Installation / Start up: 2 x 330 m³/h (max. dry weather) 58 - 660 m³/h 2x 125 m³ concrete, 5 m depth ~ 20 min 2 x WEDECO SMOevo 410 (max. 1,8 kg/h each) 2x 55 m³ Moving Bed Bio Reactor (incl. Mixer) 04 / 2016 - 07 / 2016

References WWTP – Highlights


Xylem Complete Solution

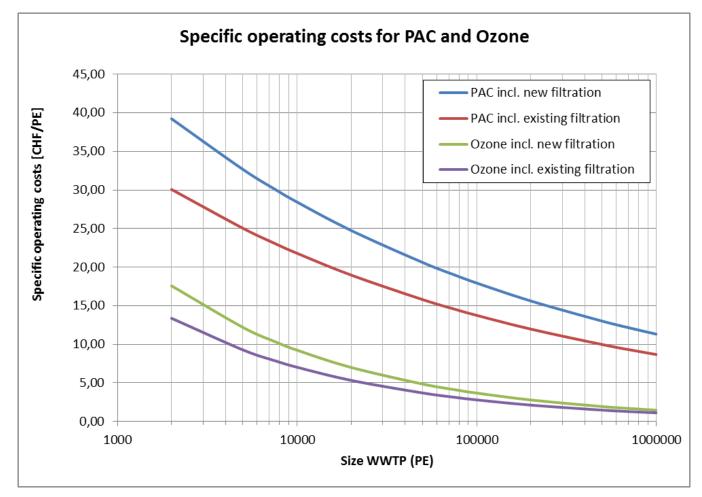
Wedeco
Sanitaire
WTW


Ozone generator, COD, Instruments, PLC ceramic Dome diffusors Multiparameter Online analyzer (COD, DOC, Nitrite, SAC)


Removal of Emerging Contaminants (EC) by ozone

- Costs -

Costs for EC removal


Investment costs

Source: Summary from T. Haltmeier; Kosten der Elimination von Mikroverunreinigungen im Abwasser; 2012

Costs for EC removal Operating costs

Source: Summary from T. Haltmeier; Kosten der Elimination von Mikroverunreinigungen im Abwasser; 2012

Removal of Emerging Contaminants (EC) by ozone

- Summary -

- Removal of EC's >90 %
- More versatile and less expensive than activated carbon (up to 40%)
- Low ozone dosages are required (approx. 0,6 0,8 g Ozone / g DOC)
- Simple implementation in existing and new projects
- Reliable and control supported process
- Low OpEx cost increase per m³ treated water: approx. 2 4 €uroCent

Thank you for

your attention!

WEDECO

a xylem brand

Ing. Federico Dallera Xylem Water Solutions Italia S.r.l. Reparto Treatment WEDECO Via G. Rossini 1/A – Lainate (MI) Tel. 02.90358.227 federico.dallera@xyleminc.com

