

Circular Economy oriented services for re-use and remanufacturing of hybrid and electric vehicles components through smart and movable modules

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 776851

Project figures

No	Name	Country		
1	CONSIGLIO NAZIONALE DELLE RICERCHE* - Coordinator			
2	LINKOPINGS UNIVERSITET	Sweden		
3	ENVIROBAT ESPANA SL	Spain		
4	PRODIGENTIA - TECNOLOGIAS DE INFORMACAO SA	Portugal		
5	AGENCIA ESTATAL CONSEJO SUPERIOR DEINVESTIGACIONES CIENTIFICAS	Spain		
6	CIRCULAR ECONOMY SOLUTIONS GMBH	Germany		
7	COBAT SERVIZI	Italy		
8	FIAT CHRYSLER AUTOMOBILES ITALY SPA	Italy		
9	RADICI NOVACIPS SPA	Italy		
10	IMA MATERIALFORSCHUNG UND ANWENDUNGSTECHNIK GMBH	Germany		
11	FRAUNHOFER GESELLSCHAFT ZUR FOERDERUNG DER ANGEWANDTEN FORSCHUNG E.V	Germany		
12	AVICENNE DEVELOPPEMENT	France		
13	CIA AUTOMATION AND ROBOTICS SRL	Italy		
14	E-VAI SRL	Italy		
15	JRC -JOINT RESEARCH CENTREEUROPEAN COMMISSION	Belgium		

15 Partners

7 Countries

• Costs: 7,7 mIn€

• EU Funding: 6,2 mIn€

 From June 2018 to May 2021 (3 years)

 Coordinator: Giacomo Copani (CNR-STIIMA)

Ç, Ç, Ç, Ç

Current and future challenges

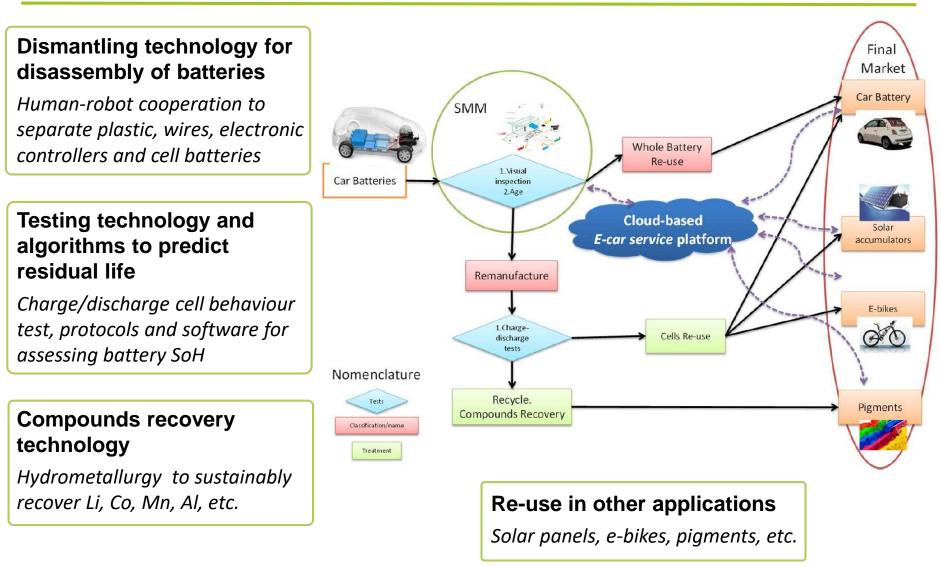
High Total Cost of Ownership of E&HEVs

E

Users' experience

- High initial cost of E&HEVs due to battery and other high added-value materials and components
- Battery life
- Maintenance cost
- Vehicle performance and autonomy
- Maintenance need
- Recharging stations
-

End-Of-Life


EU is not currently prepared to efficiently manage the EOL of E&HEVs:

CarE-Service

- No consolidated processes and technologies for E&HEVs EOL
- No value chains for E&HEVs EOL

Re-use technologies for Li-lon batteries

Smart Mobile Modules

Mobile units bringing advanced technology for on-site disassembly and testing/certification where is the demand

Disassembly Module

- DSS suggesting which components to disassemble based on car sensors data, manufacturer product data and market
- Disassembly guidelines
- Robotics cooperative disassembly
- Mechatronics tools

Testing Module

Functional, geometric, mechanical and electric testing methods and technologies for:

- Certification of re-usable parts
- Testing of components and parts for remanufacturing
- estimation of the type and content of high value-added materials for recycling

New mobility products-services

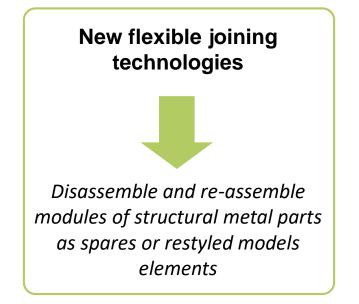
Non-ownership:

- car sharing, renting, leasing
- Performance-oriented:
 - Responsibility of the service provider for vehicle availability and performance
 - Quality reward criteria for customers returning vehicles

• Exploiting benefits of circular economy:

- Reduced cost of spares
- Reduced cost of vehicles built with reusable parts
- Continuous functional and aesthetic upgrade of parts through remanufacturing/refurbishing at low cost
- High market segmentation

Benefits for customers:



- higher affordability
- better assistance
- Increased overall transportation performance
- improved user experience

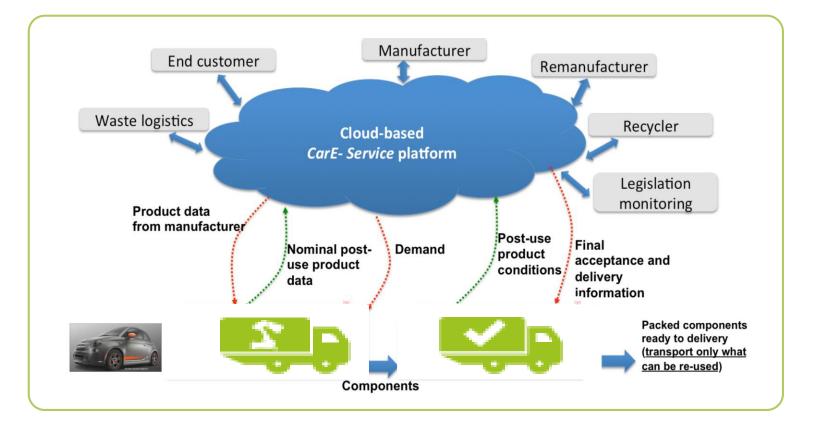
Re-use technologies for metal parts

Cold reforming of external non-structural elements

Obtain new parts to use as spares or to upgrade vehicles aesthetics at sustainable conditions

Re-use technologies for techno-polymers

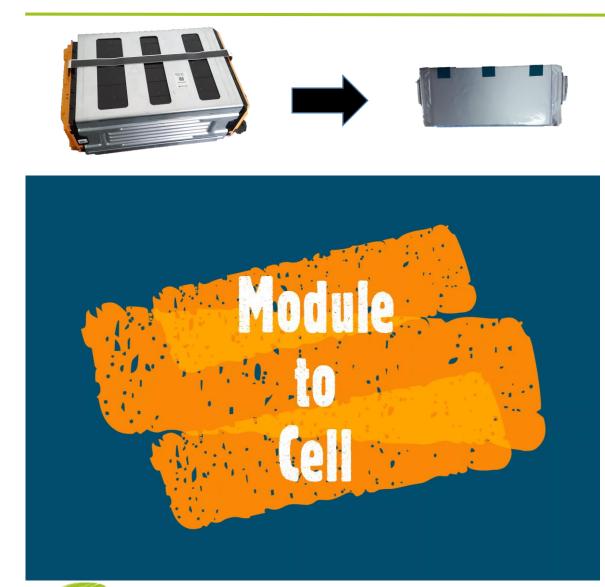
New recycling process for techno-polymers


- Separation of metal sub-parts
- Grinding of new formulation compounds
- Extrusion for transformation of new parts (for automotive and other sectors such as furniture, design, etc.)
- Testing of materials properties

CarE-Service ICT Platform

ICT Platform connecting demand and supply of re-usable parts and allowing the coordination and optimization of the re-use value chain

Re-design dei moduli



Dismantling

– Module to Cell

GENERAL PROTOCOL

Step	Task	Level	Time	Safety equipment
1	Removal of the external protection cases		Min: 5mins Max: 30mins	High voltage gloves Safety glasses
2	Identification and detachment of service plugs and fuses to secure the battery		Min: seconds Max: 3mins	High voltage gloves Safety glasses
3	Removal of cooling system, if available	From: pack To: module	Min: 5mins Max: 20mins	High voltage gloves Safety glasses
4	Detachment of modules from the high voltage connections		Min: 3mins Max: 30mins	High voltage gloves Safety glasses
5	Disconnection of the modules from BMS electric connections		Min: 2mins Max: 15mins	Safety glasses
6	Liberation of the modules		Min: 2mins Max: 30mins	Safety glasses
7	Removal of module external casing		Min: 0 Max: 10mins	Safety glasses
8	Detachment of cell electronics and wiring	From: module	Min: 3mins Max: 5mins	Safety glasses
9	Detachment of electrical busbar joints	To: cells	Min: 2mins Max:30mins	Safety glasses
10	Liberation of cells from supporting casing		Min: 2mins Max: 20mins	Safety glasses

SOS- Standard Operational Sheets

Task	Level	Strategies	Examples	
	From:	METALLIC CASE If the external case is joint together it is cut and removed. <u>Required time</u> : 20mins <u>Possible criticalities</u> : risk to damage the cells		
Removal of module external case	MODULE ule mal To:	CLAMPS A plastic cover could protect terminals and should be removed applying a leverage <u>Required time</u> : seconds <u>Possible criticalities</u> : the operation exposes components having a voltage	dampre Gwer	
cuse	CELLS	<u>SCREWS</u> Unscrew screws and fold tabs in. Then remove case <u>Screws amount</u> : 2-4 <u>Required time</u> : 2-5mins <u>Possible criticalities</u> : safety, damage cells		

Remanufacturing

DEVICE POWERED:

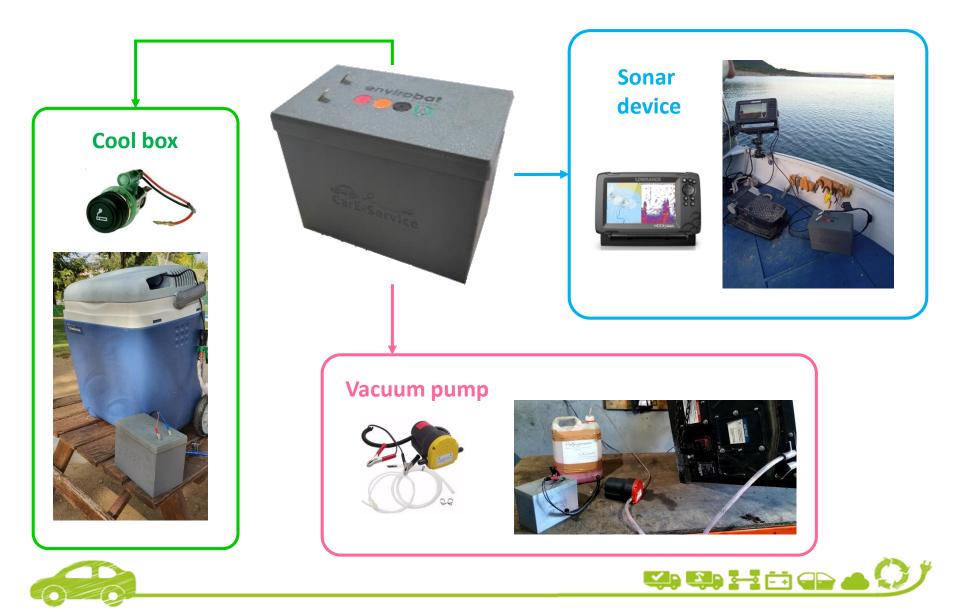
Simple and low cost ventilator, RESPIREM, for COVID-19 and other diseases

ELECTRICAL REQUIREMENTS:

12 V DC, 5 A

APPLICATION:

Electric back-up in case of power supply cut. Portable power supply in emergencies and field hospitals.



SMALL SCALE: Other examples

Remanufacturing

LARGE SCALE: Street lighting stationary storage system

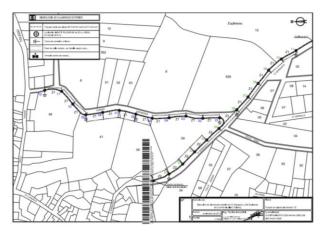
Remanufacturing

DEVICE POWERED:

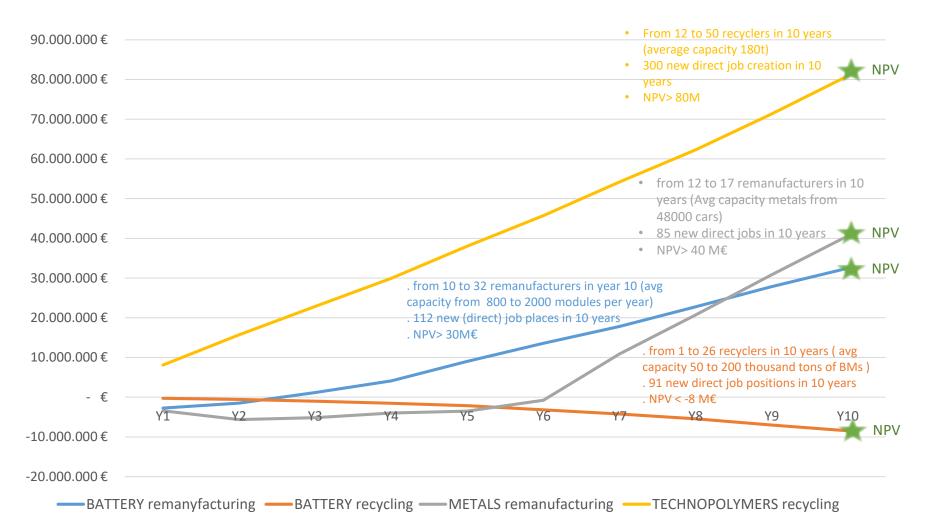
23 streetlights

ELECTRICAL REQUIREMENTS:

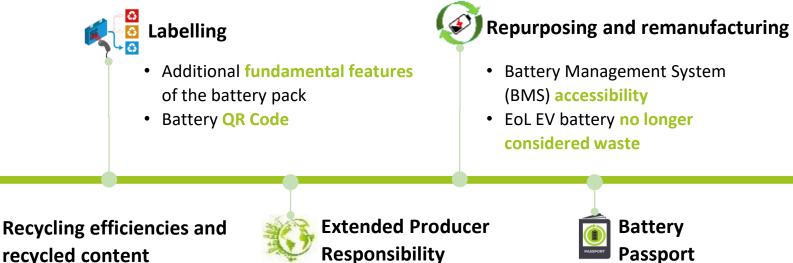
400 V AC Up to 18 h autonomy 3 days in a row


APPLICATION:

Cycle path illumination in Los Navalucillos (Toledo)



Business Models and Eco-env assessment of re-use value chains


Cumulate Discounted Cash Flows


🥰 s 🕰 s 🖂 🤃 🤅

CarE-Service proposals on legislation

- Secure access to secondary raw materials through recycling
- Potential impacts of the most relevant recycling processes
- Avoid a potential slowing of the EU production market

- EPR battery transferability
- EV batteries National Register

- Connection with Labelling and QR code
- Full accessibility to the **Battery Passport**

CarE-Service proposals on standardization

Semi-automated battery disassembly

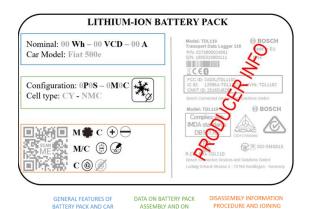
Standardized semi-automated procedure for a non-destructive disassembly

Recycling efficiency calculation

RE calculation must include:

- fE: energy consumption factor
- fNRAi : natural resources availability
- fco2: greenhouse gas emissions

$$R_E = \frac{\sum \left(m_{output_i} \cdot f_{NRA_i}\right)}{m_{input}} \cdot f_E \cdot f_{CO_2} \times 100, \text{ [mass \%]}$$

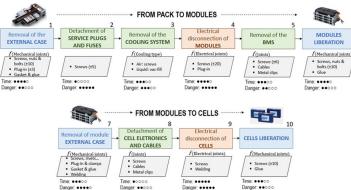

SOS for manual battery disassembly

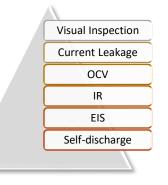
Battery testing

Standardized classification testing protocol

Battery re-design

Standardized pack and module labelling


SPECIFIC CELLS USED


MODEL

SYSTEMS

Standard Operational Sheet for

complete battery pack disassembly

www.careserviceproject.eu

Coordinator: Giacomo Copani CNR-STIIMA National Research Council of Italy

www.careserviceproject.eu

@CarE_Service_EU

CarE_Service_EU

CarE-Service_EU